Existence, Uniqueness and Lipschitz Dependence for Patlak-Keller-Segel and Navier-Stokes in R with Measure-valued Initial Data
نویسندگان
چکیده
Abstract We establish a new local well-posedness result in the space of finite Borel measures for mild solutions of the parabolic-elliptic Patlak-Keller-Segel (PKS) model of chemotactic aggregation in two dimensions. Our result only requires that the initial measure satisfy the necessary assumption max x∈R μ({x}) < 8π. This work improves the small-data results of Biler [4] and the existence results of Senba and Suzuki [63]. Our work is based on that of Gallagher and Gallay [33], who prove the uniqueness and log-Lipschitz continuity of the solution map for the 2D Navier-Stokes equations (NSE) with measure-valued initial vorticity. We refine their techniques and present an alternative version of their proof which yields existence, uniqueness and Lipschitz continuity of the solution maps of both PKS and NSE. Many steps are more difficult for PKS than for NSE, particularly on the level of the linear estimates related to the self-similar spreading solutions.
منابع مشابه
A finite volume scheme for the Patlak-Keller-Segel chemotaxis model
A finite volume method is presented to discretize the Patlak-Keller-Segel (PKS) model for chemosensitive movements. On the one hand, we prove existence and uniqueness of a numerical solution to the proposed scheme. On the other hand, we give a priori estimates and establish a threshold on the initial mass, for which we show that the numerical approximation convergences to the solution to the PK...
متن کاملLocal and Global Well-Posedness for Aggregation Equations and Patlak-Keller-Segel Models with Degenerate Diffusion
Recently, there has been a wide interest in the study of aggregation equations and Patlak-Keller-Segel (PKS) models for chemotaxis with degenerate diffusion. The focus of this paper is the unification and generalization of the well-posedness theory of these models. We prove local well-posedness on bounded domains for dimensions d ≥ 2 and in all of space for d ≥ 3, the uniqueness being a result ...
متن کاملUniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity
We show that any solution of the two-dimensional Navier-Stokes equation whose vorticity distribution is uniformly bounded in L(R) for positive times is entirely determined by the trace of the vorticity at t = 0, which is a finite measure. When combined with previous existence results by Cottet, by Giga, Miyakawa, and Osada, and by Kato, this uniqueness property implies that the Cauchy problem f...
متن کاملFunctional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model
We investigate the long time behavior of the critical mass Patlak-Keller-Segel equation. This equation has a one parameter family of steady-state solutions ̺λ, λ > 0, with thick tails whose second moment is not bounded. We show that these steady state solutions are stable, and find basins of attraction for them using an entropy functional Hλ coming from the critical fast diffusion equation in R ...
متن کاملGlobal Existence and Uniqueness Theorem for 3D – Navier-Stokes System on T3 for Small Initial Conditions in the Spaces Φ(α)
We consider Cauchy problem for three-dimensional Navier-Stokes system with periodic boundary conditions with initial data from the space of pseudo-measures Φ(α). We provide global existence and uniqueness of the solution for sufficiently small initial data.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013